
 

COMMON MYTHS & IMPORTANT REALITIES OF AGILE METHODS 
 

Common Myths 
 

• Lacks Formal Documentation - Project, architecture, design, test, CM, QA, etc. 
• Lacks Requirements - Prototyping approach used when there are no formal requirements. 
• Lacks Architecture - Doesn't take the time to develop a formal broad architectural framework. 
• Doesn't Scale Up or Out - Only for small collocated F2F non-virtual teams using verbal communications. 
• Lacks Quality Focus - Sacrifices quality for speed, productivity, programming, cycle time, etc. 
• Increases Risk - Lacks rigor and discipline necessary for mission and safety-critical systems. 
• Lacks Governance - Doesn't use groups like configuration management, quality assurance, testing, etc. 
• Lacks Discipline - Approach used by coding cowboys who don't want to use disciplined processes. 
• Doesn't Consider Maintenance - Only for rapid prototypes that don't require long-term documentation and quality. 
• Only for Computer Programmers - Can't be used for functions such as business, administration, engineering, hardware, etc. 
• Only for Simple IT Systems - Not for large and complex systems with large budgets, requirements, groups, timelines, etc. 
• Only for Software Systems - Not for expensive hardware or embedded systems that don’t support rapid iterative development. 
• Not for Regulated Markets - Lacks rigor, discipline, and formality for DoD, FAA, FDA, NASA, and other safety-critical domains. 
• Not for Rigid Contracting - Only for level of effort time-and-materials labor contracts with flexible scope, budgets, timelines, and expectations. 
• Doesn't Support Non-Functional Requirements - No support for quality, reliability, safety, dependability, usability, security, maintainability, etc. 
• Not Aligned with Government Culture - Government contracting locked into firm fixed-price contracting culture aligned with rigid traditional methods. 

 

Important Realities 
 

• Cultural Mismatch - New systems development paradigm to which people are unaccustomed causing resentment and distrust. 
• Resistance to Change - People will reject a NEW approach whether the edict comes from executives, middle managers, or technical personnel. 
• Top-Down Organizational Change - Attempt another top-down big bang organizational rollout, which may increase chaos, fear, and resistance. 
• Ignore Training - Projects, teams, and individuals expected to apply them without formal training, learning, coaching, mentoring, or experience. 
• Business Misalignment - Failure to elicit high-priority requirements from key stakeholders and deliver those first (and use projects to learn new skills). 
• Scale Too Big - Fail to de-scope, downsize, and focus upon a smaller set of customer needs, requirements, scope, architecture, implementation, etc. 
• Minimalistic Guidelines - Only has a broad lightweight project framework so rigor and discipline is voluntary, skill, and experience based. 
• Ignore Quality Control - Teams don't have experience, skill, training, or motivation to apply advanced testing practices to verify and validate systems. 
• Traditional Focus - Use agile methods to incrementally implement a large project scope, requirements document, or formal system architecture. 
• Backsliding - Gradually backslide into a traditional, long-term plan and document intensive paradigm out of fear, lack of trust, and lack of courage. 
• Scrummerfalling - Incrementally produce plans, requirements, architectures, designs, and tests instead of developing validated code each iteration. 
• Hardware Focus - Design customized FPGA hardware boards vs. running signal processing algorithms as application software on commodity PCs. 
• Ignore Infrastructure & Automation - Assume agile methods are a simple manual process and don't establish an IT infrastructure with FOSS tools. 
• Individualism - Fail to engage customers, users, and teammates in critically-important communications, conversations, and decision-making. 
• Plan Driven - Follow rigid process instead of adjusting the project scope, processes, tools, and documents to converge on a valid set of system needs. 
• Adversarial Contracting – Continue to use traditional master-slave legalistic structures vs. collaboration, cooperation, egalitarianism, and risk-sharing. 

 

Bottom Line – Agile methods require training, skill, experience, discipline, tools, and time to yield optimal results !!! 
 

(A butterfly flapping its wings in one part of the globe can cause a hurricane in another part, i.e., even small changes have positive or negative impacts ...) 

 


