
Page - 1 - 

Agile Methods and Virtual Distributed Teams 
Dr. David F. Rico, PMP, CSM 

 
Are Agile Methods and virtual distributed teams compatible? Aren't Agile Methods and virtual 
distributed teams polar opposites? Aren't they incompatible? And, if they are compatible, what are 
the specific techniques for making Agile Methods work for virtual distributed teams? 
 
What does all of this mean? What is this controversy surrounding Agile Methods and virtual 
distributed teams? Why wouldn't Agile Methods be compatible with virtual distributed teams? 
 
Well, all of this is related to the principles and values of Agile Methods as defined by the Agile 
Manifesto (http://www.agilemanifesto.org). The sixth of 12 major principles is as follows, "The most 
efficient and effective method of conveying information to and within a development team is face-to-
face conversation." It relates to two of the four major values of Agile Methods: (1) individuals and 
interactions and (2) customer collaboration. So, taken at face-value, no pun intended, one would be 
omitting half or 50% of the values of Agile Methods if one didn't use face-to-face conversations with 
customers and team members. Or, would they? 
 
Face-to-face communication is contextually-rich, and is the preferred method of communication in 
Agile Methods. In Traditional Methods, statements-of-work, requests for proposals, contracts, 
requirements, and designs are considered contextually rich. But, nothing beats good old face-to-face 
communication when it comes to interacting with customers and team members. The creators of 
Agile Methods realized this and etched face-to-face communication in stone as one of their 12 
commandments. 
 
Okay, now, so anyone who can read a book on Agile Methods knows that face-to-face practices are 
mandatory. That is, anyone except those who are trying to make money in the global software 
industry. The global software industry is all about connecting or automating the supply chain of 
goods and services using products from China, computer programming labor from India, project 
managers from North America, and researchers in Europe. Well, that's simple, just co-locate 
everyone. Not so fast, why can't everyone stay exactly where they are and use electronic means to 
communicate? Well, that would involve violating the principles and values of Agile Methods, 
wouldn't it? In fact, if a team is not face-to-face, it's using Traditional Methods, not Agile Methods. 
Or, is it? 
 
The creators of Agile Methods had part of the equation correct. Face-to-face communication is 
contextually rich, and is therefore superior to virtual distributed communication or software 
documentation in certain circumstances. However, the North American creators of Agile Methods 
failed to anticipate or acknowledge that 95% of the world wasn't collocated with them, and that North 
America wasn't even the predominant computer programming market. Didn't they heed the warnings 
of Ed Yourdon who said that the Indian software market was skyrocketing or how about Michael 
Cusumano's warning that Japan's Software Factories were taking over the planet? Perhaps they were 
caught up in the euphoria of Microsoft's and Intel's instant success in the 1990s. Or, the Internet Gold 
Rush convinced them that North American information technology dominance was here to stay? 
 
I think the only ones who didn't believe the creators of Agile Methods were the 70 or so other 
countries besides the United States, who benefited from the Personal Computer and Internet 



Page - 2 - 

revolution as well (along with any enterprising capitalist who wanted to make a quick-buck 
interconnecting the global supply chain). 
 
The problem is that 99% of the population who knows anything about Agile Methods believes that 
one isn't being Agile if one isn't using face-to-face communication and all of the associated trappings 
(e.g., onsite customers, pair programmers, daily standup meetings, etc.). 
 
Well, hang on to your seats, because the world is changing as we speak, and virtual distributed teams 
for Agile Methods are here to stay. We all have the benefit of being on the leading edge of this 
phenomenon as part of the next phase of software engineering evolution. I bet most people who are 
delving into Agile Methods didn't even realize they were on the cutting-edge of software engineering 
when they endeavored to use Agile Methods? Let's take a look at some of the evidence. 
 
The folks at British Telecom have devised a set of practices for making Agile Methods work with 
virtual distributed teams (Cannizzo, Marcionetti, & Moser, 2008). They've identified four major 
practices to help marry Agile Methods with virtual distributed teams: (1) maximize project status 
visibility to all stakeholders, (2) ruthlessly automate as many development and management 
processes as possible, (3) ensure effective communications to the maximum extent possible, and (4) 
provide immediate feedback on every task performed. They use Eclipse IDE for writing code, 
Fitnesse and Selenium for acceptance testing, CruiseControl with Ant as a build tool, Danube 
ScrumWorks for user stories, Subversion for version control, and Atlassian Confluence Wiki for 
document sharing. Other tools include Visual Studio, NetBeans, Capistrano, Live Meeting, 
Communicator, Meet Me, and a variety of team building tools. 
 
The folks at Yahoo! (Drummond & Unson, 2008) suggest mandatory meetings within time zones, 
periodic face-to-face meetings across time zones, overlapping virtual distributed meetings where 
possible, periodic synchronization between international Scrum Masters, the use of Wikis to share 
photographs of user stories on Post It notes, and ensuring that virtual distributed teams maintain the 
rank-ordering or priority of user stories. Furthermore, Yahoo! says to emphasize individuals and 
interactions over processes and tools as much as humanly possible, factor in the needs of the global 
workforce over individual practices of Agile Methods, and ensure that accurate information is shared 
in a timely fashion. 
 
The folks in Canada (Robarts, 2008) say to have periodic face-to-face meetings as much as possible 
(especially during project kickoff), periodically send people back and forth from one country or 
location to another, ensure domain experts periodically visit one another, ensure delivery teams 
occasionally visit one another face-to-face, hold virtual distributed daily standup meetings between 
people in the same time zone, exchange informal notes such as PowerPoint presentations as meeting 
minutes, and ensure Wikis and other automated tool content is constantly up-to-date. The Canadians 
remind us to emphasize the use of Agile Methods practices like User Stories (instead of 
specifications), use video conferences as much as possible, and use portable information technologies 
such as laptops, cell phones, and personal digital assistants (e.g., BlackBerries). More importantly, 
proper schedule management is of utmost importance, especially when it comes to building in 
management reserve, accounting for international Holidays and unplanned events, and keeping the 
schedules current as well as communicating them. Interestingly enough, we're advised to allow 
enough latitude for differences in individual Agile Method practices across international boundaries. 
 
The list goes on and on, as the Indians recommend automated dashboards and wikis 
(Shrinivasavadhani & Panicker, 2008). The Americans emphasize WebEx Meetings, periodic virtual 



Page - 3 - 

distributed meetings between international Scrum Masters, and a variety of techniques such as 
balancing power, allowing for variation in practices, detailed User Stories, empowerment, sharing 
vision statements, executive commitment, and as much communication as possible (Therrien, 2008). 
Another Canadian team says to use nearshore resources, maintain strict communication plans, share 
electronic workspaces, use synchronous communications only in adjacent time zones, and use 
asynchronous retrospectives (Vax & Michaud, 2008). Finally, a group of Americans and Canadians 
recommend instant messaging, synchronous communication mechanisms, video conferencing, face-
to-face virtual distributed meetings, virtual distributed standup meetings, and the list goes on and on 
(Young & Terashima, 2008). You don't want to skip this last paper, because it contained a lot of 
helpful advice. 
 
So, what's the bottom line? The creators of Agile Methods had it right, face-to-face communication is 
contextually rich and face-to-face is the preferred method of communication. And, a lot of face-to-
face communication is a key, if not the key, to project success. I speak from experience on this one, 
because one of the most difficult projects I've ever managed, was success due to frequent, 
unscheduled face-to-face communication to break down the barriers to personal trust. Once the 
barriers to trust had been breached through frequent personal interaction, then the project completed 
successfully. We were given an award by a customer who had never given an award to a consulting 
firm before. You just don't find that kind of advice in your typical textbook on Traditional Methods. 
So, how do we duplicate the benefits of face-to-face interaction in virtual distributed teams? 
Communicate, frequently and often! Outside of video teleconferencing, telephone calls have been 
one of the best forms of communication over the last century. It's the "unscheduled" telephone calls 
that provide the most return-on-investment (versus regularly scheduled telephone calls that just don’t 
seem to have the same effects). Ad hoc telephone calls help alleviate anxiety instantly, as opposed to 
scheduled phone calls. Intimate, personal communications break down barriers to trust and ensure 
project success almost every time. 
 
REFERENCES 
 
Cannizzo, F., Marcionetti, G., & Moser, P. (2008). Evolution of the tools and practices of a large 
distributed agile team. Proceedings of the Agile Conference (Agile 2008), Toronto, Canada, 513-518. 
 
Drummond, B. S., & Unson, J. F. (2008). Yahoo distributed agile: Notes from the world over. 
Proceedings of the Agile Conference (Agile 2008), Toronto, Canada, 315-321. 
 
Robarts, J. M. (2008). Practical considerations for distributed agile projects. Proceedings of the Agile 
Conference (Agile 2008), Toronto, Canada, 327-332. 
 
Shrinivasavadhani, J., & Panicker, V. (2008). Remote mentoring a distributed agile team. 
Proceedings of the Agile Conference (Agile 2008), Toronto, Canada, 322-326. 
 
Therrien, E. (2008). Overcoming the challenges of building a distributed agile organization. 
Proceedings of the Agile Conference (Agile 2008), Toronto, Canada, 368-372. 
 
Vax, M., & Michaud, S. (2008). Distributed agile: Growing a practice together. Proceedings of the 
Agile Conference (Agile 2008), Toronto, Canada, 310-314. 
 
Young, C., & Terashima, H. (2008). How did we adapt agile processes to our distributed 
development? Proceedings of the Agile Conference (Agile 2008), Toronto, Canada, 304-309. 



Page - 4 - 

Practices of Agile Methods and Virtual Distributed Teams 
 

Author Category Practice Technique 
Enable stakeholders to see the status of the project in any desired detail. Automation 
Enable managers and customers to see the status of user stories. Automation 
Enable managers and customers to see user stories and backlogs. Automation 
Enable teams to see the properties of the code being written. Automation 
Enable teams to see whether software builds or passes tests. Automation 

1.1 Provide 
maximum project 

status visibility 

Enable teams to see whether software meets code metric thresholds. Automation 
Automate as many development and management processes as possible. Automation 
Automate the running of unit tests every time a source file is saved. Automation 
Automate the running of metrics-gathering tools on the fly. Automation 
Automate the running of back-end integration tests. Automation 
Automate deployment of the Web portals to the production environment. Automation 

1.2 Ruthlessly 
automate 

everything 

Automate tasks around confirming whether something is release-ready. Automation 
Enable information exchange with minimal waiting and misunderstanding. Conferencing 
Enable teams to co-locate three days per week. Periodic Collocation

1.3 Institute 
effective 

communication Enable teams to co-locate for one or two iterations per release cycle. Periodic Collocation
Enable teams to quickly know outcomes or side effects of completed tasks. Automation 
Enable teams to address problems as they occur. Automation 
Enable teams to quickly know whether completed code quality is sufficient. Automation 
Enable teams to quickly gather feedback on any development activity. Automation 
Enable teams to make use of IDE plug-ins to gathering of metrics on the fly. Automation 
Enable teams to easily run only a subset of unit tests. Automation 
Enable teams to produce integration tests to pinpoint the cause of faults. Automation 
Enable teams to minimize clashes and merges of code and other artifacts. Automation 
Enable teams to synchronize source code builds several times per day. Automation 

1.4 Enable teams to 
obtain immediate 

feedback 

Enable teams to negotiate the priority of user stories and evaluate backlogs. Empowerment 
Use Eclipse as a framework for building rich client applications. Automation 
Use Eclipse with JUnit, Subversion, Emma, CheckStyle, and FindBugs. Automation 

1.5 Use Eclipse to 
automate 

development Use Eclipse as the editor of choice for working with the Java language. Automation 
Use Fitnesse and Selenium to implement customer acceptance test suites. Automation 
Use Fitnesse to test application programming interfaces (APIs). Automation 
Use Selenium to test web front-ends. Automation 
Use Fitnesse to allow developers to write tests using wiki syntax. Automation 
Use Fitnesse to make tests available on web pages to be run on demand. Automation 
Use Fitnesse to include test suites for specific types of environments. Automation 
Use Fitnesse to create test suites configured for different environments. Automation 

1.6 Use Fitnesse 
and Selenium to 

automate 
acceptance testing 

Use Fitnesse to run integration tests for both development and production. Automation 
Use Apache Ant to execute build scripts for Java applications. Automation 
Use Apache Ant to write complex and flexible build scripts for reuse. Automation 
Use Apache Ant to manage continuous builds. Automation 
Use Apache Ant to build projects in different programming languages. Automation 
Use Apache Ant to provide an administration console. Automation 
Use Apache Ant to provide reporting for managing builds and build artifacts. Automation 

1.7 Use 
CruiseControl with 

Ant to automate 
software builds 

Use Apache Ant to automate builds for running performance tests. Automation 
Use ScrumWorks to support the adoption of the Scrum agile methodology. Automation 
Use ScrumWorks to allow teams to manage their backlog on a virtual wall. Automation 
Use ScrumWorks to manage the Scrum backlogs, teams, and products. Automation 
Use ScrumWorks to provide reporting facilities for accessing historical data. Automation 
Use ScrumWorks to serve as a reporting front end. Automation 

1.8 Use Danube 
ScrumWorks to 
automate user 

stories 
Use ScrumWorks to retrieve information during retrospectives. Automation 
Use Subversion as a software source code control system. Automation 
Use Subversion as a repository via several protocols. Automation 1.9 Use Subversion 

for version control Use Subversion with Tortoise SVN, Subversive, and Subclipse plug-ins. Automation 
Use Atlassian Confluence Wiki to share and produce documents. Shared Workspaces 
Use Atlassian Confluence Wiki for collaborative editing. Shared Workspaces 1.10 Use Atlassian 

for documentation Use Atlassian Confluence Wiki for rich content using add-ons. Shared Workspaces 
Use Visual Studio (for .NET development) and NetBeans (for Ruby). Automation 
Use Capistrano to automate deployment of Ruby on Rails applications. Automation 
Use Microsoft Live Meeting, Microsoft Communicator, and BT Meet Me. Conferencing 

1.0 Cannizzo, 
Marcionetti, & 
Moser, 2008 

1.11 Use other tools 
for automation 

Use Foosball table, games console, break-out area with sofas, and beanbags. Process Flexibility 
Don't follow the Scrum practices religiously. Process Flexibility 
Don't require teams in different time zones to attend all Scrum meetings. Process Flexibility 
Don't follow Scrum to the exclusion of cultural and religious differences. Cultural Sensitivity 
Don't use Scrum to make international teams feel like second class citizens. Empowerment 

2.0 Drummond 
& Unson, 2008 

2.1 Don't fall into 
the easy trap 

Don't hinder the adoption of Scrum by alienating international teams. Empowerment 



Page - 5 - 

Author Category Practice Technique 
Don't limit international interactions to phone and video meetings. Periodic Collocation
Don't ask international teams to make unnecessary personal sacrifices. Cultural Sensitivity 
Use Scrum retrospectives to identify issues affecting international teams. Empowerment 
Use Scrum retrospectives to smoke out inequitable practices. Empowerment 
Use informal chats with Scrum Masters to augment retrospectives. Empowerment 
Use face-to-face, onsite training to further identify inequitable practices. Periodic Collocation

2.2 Bridge the 
distributed divide 

Have Scrum Masters and Agile Coaches regularly communicate. Touch Points 
Adopt "go-local" rule to remove having to attend early or late meetings. Process Flexibility 
Allow each team to do their meetings at their own time zones. Process Flexibility 
Institute key touch points between senior members of the team. Touch Points 
Have managers at multiple locations meet two or three times a week. Touch Points 
Alternate the schedule of who will wake up early and stay up late each week. Process Flexibility 

2.3 Go local 

Remove the pain of having the teams attend lengthy late or early meetings. Process Flexibility 
Foster bonding and collaboration by having face-to-face, quarterly meetings. Periodic Collocation
Alternate location of face-to-face, quarterly release planning meetings. Periodic Collocation
Have everyone together in one location for at least one occasional sprint. Periodic Collocation
Equalize the pain of having to travel 24 hours back and forth across sites. Periodic Collocation

2.4 Institute 
periodic face-to-

face meetings 
Allow people to connect the faces to the voices they hear on the phone. Periodic Collocation
Adopt a strict time limit on sprint planning and review meetings. Conferencing 
Use the first hour to review prior deliverables and results of retrospectives. Conferencing 
Allow exchange of stakeholder feedback between managers and developers. Empowerment 
Reserve the second hour for discussing the details of the product backlog. Conferencing 
Allow the teams to review backlog items and ask detailed questions. Empowerment 
Enforce meeting end times, as well user stories, priorities, and commitments. Conferencing 
Repeat the planning meeting at remote sites to identify tasks and estimates. Touch Points 

2.5 Make some 
immediate 

adaptations 

Synchronize any local adjustments to sprint backlogs at the end of the day. Process Flexibility 
Synchronize communications between product owners and Scrum masters. Touch Points 
Discuss the sprint progress and backlog status at least three times a week. Touch Points 2.6 Use local 

proxies Use local Scrum Masters as alternate product owners to answer questions. Empowerment 
Provide training in agile methods to the whole team at beginning of project. Coaching 
Use the same agile methods trainer to maximize consistency. Coaching 
Embed agile coaches within each team at each location. Coaching 
Hold daily meetings among the agile coaches at each location. Coaching 

2.7 Get everyone on 
the same page up-

front 
Hold frequent voice and email exchanges among agile coaches. Coaching 
Use highly visible post-it notes for communicating sprint information. Shared Workspaces 
Use shared easily editable team Wiki pages to communicate progress. Shared Workspaces 
Keep shared information constantly updated to maintain interest in activities. Shared Workspaces 
Produce current status and information using simple web page formats. Shared Workspaces 
Distribute digital photographs of information radiators on wikis. Shared Workspaces 
Use understandable identifiers and labels for user stories and tasks. Shared Workspaces 
Make shape of task board and movement of stickies easy to follow. Shared Workspaces 
Emphasize use of visible user stories and tasks on post it notes. Shared Workspaces 
Produce frequent feedback by instituting two instead of four week sprints. Process Flexibility 
Synchronize end-of-sprint reviews across international locations if possible. Periodic Collocation
Use Adobe Connect for voice and video conferencing services. Conferencing 

2.8 Replicate 
information 

radiators 

Use localized retrospectives and sharing the results with all teams. Touch Points 
Maintain the priority of user stories by disallowing cherry picking. Empowerment 
Separate backlogs dedicated to regional customizations and considerations. Process Flexibility 
Use Scrum of Scrums for upper-level coordination of multiple backlogs. Process Flexibility 
Standardize communication, increasing visibility, and automate releases. Process Flexibility 
Increase communication speed by providing less detail at the task level. Process Flexibility 

2.9 Miscellaneous 
practices 

Provide consistent and authoritative training messages from coaches. Coaching 
Focus on individuals and interactions over processes and tools. Process Flexibility 
Don't allow teams to fall into the "Scrum-by-the-book" syndrome. Process Flexibility 
Don't cause resentment by having meetings at inconvenient times. Process Flexibility 
Don't use Scrum practices as a "big-stick" to alienate teams. Process Flexibility 
Make a genuine effort to factor in the needs of people. Process Flexibility 
Adapt Scrum processes, minimize pain, and place value on people. Process Flexibility 
Institute measures to close gaps in customer interaction and collaboration. Empowerment 

2.10 Avoid common 
pitfalls 

Identify individuals who have the abilities to succeed in distributed teams. Personnel Selection 
Plan for rotations through each site on a regular basis. Periodic Collocation
Get the entire delivery team together to kick off the project. Periodic Collocation
Choose a location convenient for the majority of the team for the kickoff. Periodic Collocation
Use face-to-face kickoff to meet, establish a rapport, and understand project. Periodic Collocation
Use a face-to-face kickoff to help everyone feel like part of the same team. Periodic Collocation
Invite the client or the customer to the face-to-face kickoff as well. Periodic Collocation
Use a face-to-face kickoff to help the client become more trusting. Periodic Collocation

3.0 Robarts, 
2008 

3.1 Use face-to-face 
visits and rotations 

Schedule periodic face-to-face exchanges in the case of a limited budget. Periodic Collocation



Page - 6 - 

Author Category Practice Technique 
Use face-to-face release planning with clients, product owners, and leads. Periodic Collocation
Invest in face-to-face meetings by personnel who represent everyone. Periodic Collocation
Schedule visits for product owners and team leads throughout each release. Periodic Collocation
Use periodic face-to-face meetings to establish norms, rules, and protocols. Periodic Collocation
Use face-to-face meetings to increase awareness of dedication and loyalty. Periodic Collocation
Arrange for members of the delivery team to rotate between locations. Periodic Collocation
Rotate team members between locations to share practices and customs. Periodic Collocation
Learn international visa rules and limitations before release planning begins. Periodic Collocation
Hold conference calls every day within the same time zone. Conferencing 
Hold conference calls every other day across different time zones. Conferencing 
Hold conference calls with only the leaders of very large teams. Conferencing 
Hold conference calls by rotating the leaders of very large teams. Conferencing 
Hold conference calls by sharing knowledge among leaders in large teams. Conferencing 

3.2 Communicate 
progress with 

conference call 
standups 

Hold conference calls with strict time limits. Conferencing 
Follow up verbal messages with a written versions (using PowerPoint). Process Flexibility 3.3 Follow up in 

writing Update all project artifacts, wikis, and tracking tools prior to a status calls. Shared Workspaces 
Use video conferences to present a high-level vision of the application. Conferencing 
Provide a local installation of the application for demonstration purposes. Process Flexibility 
Provide video taped messages recorded by subject matter experts. Coaching 

3.4 Communicate 
business needs by 

writing less 
Provide wireframes and lo-fi prototypes to communicate requirements. Process Flexibility 
Take international holidays into account to minimize disruptions. Cultural Sensitivity 
Take international vacations into account to minimize disruptions. Cultural Sensitivity 
Take international customs, cultures, habits, and behaviors into account. Cultural Sensitivity 
Take international seasonal weather events and phenomenon into account. Cultural Sensitivity 

3.5 Build 
contingency 
reserves into 

schedules 
Take international personal time needs and preferences into account. Cultural Sensitivity 
Assess differences in Agile Methods terms and practices across locations. Process Flexibility 
Set up wiki pages to capture terminology, references, and standard practices. Shared Workspaces 
Provide training in Agile Methods and standard practices for new members. Coaching 

3.6 Build common 
understanding of 

practices 
Allow teams to select their standard practices from a repository of templates. Process Flexibility 
Develop a product roadmap and circulate it to all of the stakeholders. Process Flexibility 
Constantly evaluate new features and align them with the roadmap. Process Flexibility 
Hold weekly meetings with the stakeholders to update them on the status. Touch Points 
Share feedback from weekly stakeholder meetings with the rest of the team. Touch Points 

4.1 Use a product 
roadmap and 
stakeholder 

meetings 
Refine and update Wiki contents prior to all discussions and meetings. Shared Workspaces 
Perform early integration and daily builds using Maven and Continuum. Automation 
Gradually adjust build frequency to suit the team's pace within the test bed. Automation 
Enhance collaboration by using automated modeling tools. Process Flexibility 
Minimize effort by using automated modeling tools for documentation. Process Flexibility 
Use tools such as project websites, Bugzilla, and source code repositories. Automation 
Use WaccPlanner and Xplanner for planning, tracking, metrics, and reports. Automation 

4.2 Enhance 
collaboration and 
productivity with 
heavy automation 

Use Wiki and Wink to facilitate discussions within the teams. Shared Workspaces 
Split up the work to help lesser skilled teams gain some momentum. Process Flexibility 
Perform release planning to divide the work into non-interdependent parts. Process Flexibility 
Allow lesser skilled remote teams to work on lower priority tasks. Process Flexibility 
Use separate branches of a common source code repository. Process Flexibility 
Gradually merge more and more code between disparate branches. Process Flexibility 
Use identical project environments to facilitate seamless integration. Automation 

4.3 Split up the 
work between 

teams with greater 
and lesser skills and 

capabilities 
Use remote mentoring as an effective way to ramp up a distributed team. Coaching 
Select remote mentors based on expertise with the product features. Coaching 
Select remote mentors based on their abilities to effectively communicate. Coaching 
Select remote mentors based on their abilities to maintain active visibility. Coaching 
Select remote mentors based on technical expertise and domain knowledge. Coaching 
Select remote mentors based on their ability to perform quality assurance. Coaching 

4.4 Select remote 
mentors 

Select remote mentors based on their ability to focus on broad issues. Coaching 
Select local mentors based on technical capabilities and domain knowledge. Coaching 
Select local mentors based on ability to participate in pair programming. Coaching 
Select local mentors based on their ability to interface with remote mentors. Coaching 
Select local mentors based on ability to participate in face-face discussions. Coaching 

4.5 Select local 
mentors 

Select local mentors based on ability to focus only the local team's release. Coaching 
Establish a remote mentoring process to help lesser skilled remote teams. Coaching 
Use remote mentoring to level skill sets, build trust, and create confidence. Coaching 
Collocate teams for kickoff, to discuss goals, and establish relationships. Periodic Collocation
Assign mentors based on knowledge gained from working with all teams. Coaching 
Ensure that remote mentors have full visibility into the work of the teams. Coaching 
Assign about 20% of the effort for remote mentors to perform their roles. Coaching 
Use written documents and diagrams to bridge culture and language barriers. Process Flexibility 

4.6 Establish a 
remote mentoring 

process 

Post documents, models, and diagrams in Wikis to enhance communications. Shared Workspaces 

4.0 
Shrinivasavadh
ani & Panicker, 

2008 

4.7 Use remote and Use a project website to maintain dashboards that contain details of teams. Automation 



Page - 7 - 

Author Category Practice Technique 
Post the features for all releases in the project website for both teams. Shared Workspaces 
Hold multiple joint rounds of collaborative meetings to establish user stories. Periodic Collocation
Hold multiple joint rounds of collaborative meetings to validate the scope. Periodic Collocation
Use the centralized project website to store and retrieve user stories. Shared Workspaces 
Use local mentors to develop, refine, and post development tasks. Coaching 
Use local mentors to ensure collaboration and frequent update of status. Coaching 
Use local mentors to send updated status using WaccPlanner (tracking tool). Coaching 
Use remote mentors to identify issues and technical flaws early on. Coaching 
Use local mentors to ensure the quality of code under development. Coaching 
Establish and hold daily standup meetings at each location. Process Flexibility 
Ensure teams communicate on a daily basis and use instant messaging. Conferencing 
Post all clarifications using wikis in the form of diagrams instead of text. Shared Workspaces 
Use local mentors upload task breakdown into Waccplanner for user stories. Coaching 
Regularly update the status of teams in Waccplanner to provide visibility. Automation 
Do not require daily stand-ups if there are significant language barriers. Process Flexibility 
Check the deliverables into a source code repository to increase visibility. Automation 
Have both mentors take corrective action based on early visibility of status. Coaching 
Use updated project status, velocity, and test status to gauge the progress. Automation 

local mentoring 
activities 

Use wikis to capture details of the look and feel of the diagrams. Shared Workspaces 
Include both local and remote teams in backlog scrubbing. Empowerment 
Allow all teams to participate in critical activities such as backlog scrubbing. Empowerment 
Allow all team members time to achieve an optimum level of comfort. Cultural Sensitivity 
Allow for cultural adaptations for consensus vs. individual decision making. Cultural Sensitivity 

5.1 Get team buy-in 
at local and remote 

locations 
Allow all teams to interface product owners, clients, and stakeholders. Empowerment 
Be flexible until a balance of home and work life is achieved. Process Flexibility 
Ensure that product owners attend at least two stand-up meetings per week. Touch Points 
Ensure that teams participate in backlog scrubbing meetings each week. Empowerment 
Allow teams to ask product owners for clarification on as-needed basis. Empowerment 
Ensure product owners update content in tools such as Version One. Automation 

5.2 Adapt Scrum 
meetings for 

working with local 
and remote teams 

Keep backlog scrubbing meetings down to a manageable time. Conferencing 
Charge local Scrum Masters with ensuring active participation by all teams. Empowerment 
Allow all teams to identify, estimate, and managing user stories and tasks. Empowerment 
Have product owners focus on long term planning, vision, and strategy. Process Flexibility 

5.3 Adapt Scrum 
Master roles 

Allow product owners to host Sprint planning and review meetings. Touch Points 
Ask product owners to provide additional requirements (if necessary). Process Flexibility 
Ask product owners to document acceptance criteria (if necessary). Process Flexibility 
Ask product owners to exchange emails for sizing, scoping, and estimating. Process Flexibility 

5.4 Adapt Product 
Owner roles 

Ask product owners to add additional content to tools such as Version One. Process Flexibility 
Ask product owners to conduct quarterly product roadmap meetings. Process Flexibility 
Ask product owners to communicate vision using WebEx and PowerPoint. Process Flexibility 
Ask product owners to communicate requirements as categories and epics. Process Flexibility 
Ask product owners to facilitate brainstorming and improvement sessions. Empowerment 

5.5 Adapt Product 
Owner interactions 

Ask product owners to travel to all locations to ensure project progress. Periodic Collocation
Facilitate communications by using automated tools such as Version One. Automation 
Supplement user stories with requirements documents in automated tools. Process Flexibility 

5.6 Facilitate 
communication 

with tools Use WebEx and conference calls as the primary methods of interaction. Conferencing 
Adapt product owner and Scrum Master roles to maintain balance of power. Empowerment 
Don’t disempower teams with localized product owners and Scrum Masters. Empowerment 
Allow teams to enjoy a sustained work pace and normal work hours. Empowerment 

5.7 Maintain an 
equitable balance of 

power 
Allow teams to fully participate in the Scrum process. Empowerment 
Adapt Scrum processes and practices to meet the needs of all teams. Process Flexibility 
Supplement user stories with detailed specifications (when necessary). Process Flexibility 
Provide detailed requirements to minimize dependency on product owners. Process Flexibility 
Use consultants to facilitate retrospectives and identify critical issues. Coaching 
Invest in training and coaching on an as-needed basis. Coaching 
Enforce commitment by regular interaction with product owners. Touch Points 
Use visuals, mockups, diagrams, online meetings, and video conferencing. Process Flexibility 

5.0 Therrien, 
2008 

5.8 Adapt Scrum 
practices and 

guidelines for local 
and remote teams 

Satisfy user needs and delight customers, not follow Scrum religiously. Process Flexibility 
Allow teams to use documentation and multiple communication channels. Process Flexibility 
Allow teams to use status tracking and reporting tools and other meetings. Automation 
Allow teams to be initially collocated and then allow them to separate. Periodic Collocation
Use shared source code management tools and a bug tracking systems. Shared Workspaces 

6.1 Adapt Agile 
Methods for a 

distributed 
environment 

Use standardized iteration planning and daily status update processes. Process Flexibility 
Use near shore resources who can meet face-to-face at regular intervals. Process Flexibility 
Keep lines of communication open between leads and Scrum Masters. Touch Points 
Provide overlapped communication time between leads and Scrum Masters. Touch Points 

6.2 Use near shore 
resources as Scrum 

Masters 
Allow Scrum Masters to coordinate acceptance testing activities. Touch Points 

6.0 Vax & 
Michaud, 2008 

6.3 Implement a Hold Scrum meetings three times per week between international teams. Process Flexibility 



Page - 8 - 

Author Category Practice Technique 
Allow teams to work from home by using common a computing toolset. Automation 
Use tools such as instant messaging and VoIP teleconferencing. Conferencing 

strict 
communication 

plan Always provide instant informal feedback by email within 12 hours. Conferencing 
Provide a persistent workspace for critical project data such as SharePoint. Shared Workspaces 
Use SharePoint for status, announcements, discussions, and documents. Shared Workspaces 
Use common source code control systems and bug tracking systems. Automation 

6.4 Use shared 
electronic work 

spaces 
Provide local system support for shared development servers. Shared Workspaces 
Divide work across no more than two time zones. Process Flexibility 
Involve the entire team of a single time zone in synchronous retrospectives. Process Flexibility 

6.5 Manage work 
effectively across 

sites Involve only the leads and Scrum masters in synchronous retrospectives. Process Flexibility 
Assign product owners and Scrum masters according to their abilities. Personnel Selection 
Allow Scrum Masters to talk and developer-to-developer communications. Touch Points 

6.6 Get the right 
people 

communicating Do not restrict the flow of communications to the organizational hierarchy. Empowerment 
Budget for occasional face-to-face travel, meetings, and communications. Periodic Collocation
Provide comprehensive training, coaching, instruction, and mentoring. Coaching 
Refactor the code base for more modularity and independence among teams. Process Flexibility 

6.7 Implement the 
appropriate 

planning 
mechanisms Base teams on personality, temperament, experience, skills, and education. Personnel Selection 

Use instant messaging for quick feedback as much as possible. Conferencing 
Use Skype or iChat to have spontaneous meetings to discuss issues. Conferencing 
Make an effort to overlap work schedules across all the teams. Conferencing 
Establish a goal of being available synchronously as much as possible. Conferencing 
Use desktop sharing combined with video conferencing for discussing code. Conferencing 
Use Virtual Network Computing (VNC) for pair programming sessions. Conferencing 
Use VNC to leverage file-indexing, bookmarking, and debugging. Conferencing 
Communicate using video conferencing for code-related reviews. Conferencing 
Take breaks to ensure everyone is following along with code reviews. Conferencing 
Use video conferences for conversation, participation, and high context. Conferencing 
Have virtual stand up meetings as much as possible (if schedules permit). Process Flexibility 
Hold weekly meetings with customers to negotiate priority of user stories. Touch Points 
Use wikis to post weekly meeting agendas along with the meeting minutes. Shared Workspaces 
Use asynchronous communication tools such as wikis. Shared Workspaces 
Use bug management systems, newsgroups, and email to log project history. Automation 
Create documents to describe the effort and time line for each team. Process Flexibility 
Communicate the business value of new features and changes to all teams. Process Flexibility 
Use a wiki page to merge and prioritize all of the work into one backlog. Shared Workspaces 

7.1 Place an 
emphasis on 

effective 
communication 

mechanisms 

Enter all tasks into a shared bug ticketing system. Automation 
Use face-to-face kickoffs and sprints to allow the teams to get acquainted. Periodic Collocation
Incorporate a short greeting period at the beginning of each meeting. Conferencing 
Discuss ordinary subjects such as the weather, wellness, and other small talk. Conferencing 
Incorporate physical surroundings into video conferences to ensure realism. Conferencing 
Allow everyone to relax as a pleasant way of starting meetings. Conferencing 
Have clear agenda and an expected duration time for all meetings. Conferencing 
Frequently pause for questions and clear up any misconceptions. Conferencing 
Strive to maintain real-time two-way communication and for realism. Conferencing 
Bring all participants into video conferences to resolve miscommunications. Conferencing 
Provide an introductory video conference on Agile Methods practices. Coaching 
Be mindful of etiquette rules associated with different cultures. Cultural Sensitivity 
Respect the holidays of all teams and don’t disturb them in these periods. Cultural Sensitivity 
Learn as much as you can about the various cultures involved in projects. Cultural Sensitivity 
Arrange meetings at reasonable times because of time zone differences. Process Flexibility 

7.2 Build a sense of 
trust with remote 

team members 

Obtain consensus on scheduling of subsequent follow-up meetings. Empowerment 
Maintain a wiki to document the application programming interfaces (APIs). Shared Workspaces 
Create a set of functional tests to verify the API against specifications. Automation 
Use functional tests for continuous integration to provide quick feedback. Automation 
Hold video conferences with all teams to discuss changes and updates. Conferencing 
Use a single code base for all teams that can be locally customized. Process Flexibility 
Program to interfaces and not to implementations when using the code base. Process Flexibility 
Enforce strict coding standards that require coding components to interfaces. Process Flexibility 
Leverage Spring Framework containers to help loosely couple systems. Process Flexibility 
Use polymorphism as a way of extending components when necessary. Process Flexibility 
Collaborate on tasks together when working on cross-country requirements. Touch Points 
Use Maven 2 for development and Ant as an auxiliary Java utility. Automation 
Use Eclipse as and IDE and with plug-ins for Maven and Ant. Automation 
Use Ant to run any command on multiple operating systems. Automation 
Ensure everything is automated and repeatable using Ant or Maven. Automation 

7.0 Young & 
Terashima, 

2008 

7.3 Software 
Architecture, Tools, 

and Design 
Approaches 

Help newcomers by using an automated development environment. Automation 

 


